

A101688


Once 1, once 0, repeat, twice 1, twice 0, repeat, thrice 1, thrice 0... and so on.


16



1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The definition is that of a linear sequence. Equivalently, define a (0,1) infinite lower triangular matrix T(n,k) (0 <= k <= n) by T(n,k) = 1 if k >= n/2, 0 otherwise, and read it by rows. The triangle T begins:
1
0 1
0 1 1
0 0 1 1
0 0 1 1 1
0 0 0 1 1 1
... The matrix T is used in A168508. [Comment revised by N. J. A. Sloane, Dec 05 2020]
Also, square array A read by antidiagonals upwards: A(n,k) = 1 if k >= n, 0 otherwise.
For n >= 1, T(n,k) = number of partitions of n into k parts of sizes 1 or 2.  Nicolae Boicu, Aug 23 2018


LINKS

Table of n, a(n) for n=0..101.
Boris Putievskiy, Transformations (of) Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.


FORMULA

G.f.: 1/[(1xy)(1y)]. kth row of array: x^(k1)/(1x).
T(n, k) = if(binomial(k, nk)>0, 1, 0).  Paul Barry, Aug 23 2005
From Boris Putievskiy, Jan 09 2013: (Start)
a(n) = floor((2*A002260(n)+1)/A003056(n)+3).
a(n) = floor((2*nt*(t+1)+1)/(t+3)), where
t = floor((1+sqrt(8*n7))/2). (End)
a(n) = floor(sqrt(2*n+1))  floor(sqrt(2*n+2)  1/2).  Ridouane Oudra, Jul 16 2020


EXAMPLE

The array A (on the left) and the triangle T of its antidiagonals (on the right):
.1 1 1 1 1 1 1 1 1 ......... 1
.0 1 1 1 1 1 1 1 1 ........ 0 1
.0 0 1 1 1 1 1 1 1 ....... 0 1 1
.0 0 0 1 1 1 1 1 1 ...... 0 0 1 1
.0 0 0 0 1 1 1 1 1 ..... 0 0 1 1 1
.0 0 0 0 0 1 1 1 1 .... 0 0 0 1 1 1
.0 0 0 0 0 0 1 1 1 ... 0 0 0 1 1 1 1
.0 0 0 0 0 0 0 1 1 .. 0 0 0 0 1 1 1 1
.0 0 0 0 0 0 0 0 1 . 0 0 0 0 1 1 1 1 1


MATHEMATICA

rows = 15; A = Array[If[#1 <= #2, 1, 0]&, {rows, rows}]; Table[A[[ij+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* JeanFrançois Alcover, May 04 2017 *)


CROSSREFS

Row sums of T (and antidiagonal sums of A) are A008619.
Cf. A079813, A168508.
Sequence in context: A087748 A117446 A187034 * A155029 A155031 A134540
Adjacent sequences: A101685 A101686 A101687 * A101689 A101690 A101691


KEYWORD

nonn,tabl


AUTHOR

Ralf Stephan, Dec 19 2004


EXTENSIONS

Edited by N. J. A. Sloane, Dec 05 2020


STATUS

approved



